Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 18(1): 4, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906988

RESUMO

BACKGROUND: Heart rate variability (HRV) is an objective, non-invasive tool to assessing autonomic dysfunction in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). People with CFS/ME tend to have lower HRV; however, in the literature there are only a few previous studies (most of them inconclusive) on their association with illness-related complaints. To address this issue, we assessed the value of different diurnal HRV parameters as potential biomarker in CFS/ME and also investigated the relationship between these HRV indices and self-reported symptoms in individuals with CFS/ME. METHODS: In this case-control study, 45 female patients who met the 1994 CDC/Fukuda definition for CFS/ME and 25 age- and gender-matched healthy controls underwent HRV recording-resting state tests. The intervals between consecutive heartbeats (RR) were continuously recorded over three 5-min periods. Time- and frequency-domain analyses were applied to estimate HRV variables. Demographic and clinical features, and self-reported symptom measures were also recorded. RESULTS: CFS/ME patients showed significantly higher scores in all symptom questionnaires (p < 0.001), decreased RR intervals (p < 0.01), and decreased HRV time- and frequency-domain parameters (p < 0.005), except for the LF/HF ratio than in the healthy controls. Overall, the correlation analysis reached significant associations between the questionnaires scores and HRV time- and frequency-domain measurements (p < 0.05). Furthermore, separate linear regression analyses showed significant relationships between self-reported fatigue symptoms and mean RR (p = 0.005), RMSSD (p = 0.0268) and HFnu indices (p = 0.0067) in CFS/ME patients, but not in healthy controls. CONCLUSIONS: Our findings suggest that ANS dysfunction presenting as increased sympathetic hyperactivity may contribute to fatigue severity in individuals with ME/CFS. Further studies comparing short- and long-term HRV recording and self-reported outcome measures with previous studies in larger CFS/ME cohorts are urgently warranted.


Assuntos
Síndrome de Fadiga Crônica , Estudos de Casos e Controles , Síndrome de Fadiga Crônica/complicações , Feminino , Frequência Cardíaca , Humanos , Autorrelato , Inquéritos e Questionários
2.
Nat Commun ; 8(1): 1488, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29133852

RESUMO

Transcription factor MEF2C regulates multiple genes linked to autism spectrum disorder (ASD), and human MEF2C haploinsufficiency results in ASD, intellectual disability, and epilepsy. However, molecular mechanisms underlying MEF2C haploinsufficiency syndrome remain poorly understood. Here we report that Mef2c +/-(Mef2c-het) mice exhibit behavioral deficits resembling those of human patients. Gene expression analyses on brains from these mice show changes in genes associated with neurogenesis, synapse formation, and neuronal cell death. Accordingly, Mef2c-het mice exhibit decreased neurogenesis, enhanced neuronal apoptosis, and an increased ratio of excitatory to inhibitory (E/I) neurotransmission. Importantly, neurobehavioral deficits, E/I imbalance, and histological damage are all ameliorated by treatment with NitroSynapsin, a new dual-action compound related to the FDA-approved drug memantine, representing an uncompetitive/fast off-rate antagonist of NMDA-type glutamate receptors. These results suggest that MEF2C haploinsufficiency leads to abnormal brain development, E/I imbalance, and neurobehavioral dysfunction, which may be mitigated by pharmacological intervention.


Assuntos
Transtorno Autístico/genética , Encéfalo/crescimento & desenvolvimento , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Haploinsuficiência , Memantina/análogos & derivados , Memantina/uso terapêutico , Animais , Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Comportamento Animal , Biomarcadores/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Morte Celular , Modelos Animais de Doenças , Regulação para Baixo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Perfilação da Expressão Gênica , Humanos , Potenciação de Longa Duração/genética , Fatores de Transcrição MEF2/genética , Memantina/farmacologia , Camundongos Endogâmicos C57BL , Neurogênese/genética , Neurônios/patologia , Fenótipo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinapses/patologia , Transmissão Sináptica/genética
3.
J Neuroinflammation ; 11: 126, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25051986

RESUMO

BACKGROUND: Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. METHODS: To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. RESULTS: P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-ß and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. CONCLUSIONS: Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Proteínas Correpressoras , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Encefalite/induzido quimicamente , Encefalite/patologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Interleucina-6/sangue , Lipopolissacarídeos/farmacologia , Masculino , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas Repressoras/genética
4.
J Alzheimers Dis ; 33(4): 1177-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23168450

RESUMO

The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying aspects of progressive cognitive decline and Alzheimer's disease (AD). Using SAMR1 mice as controls, here we explored the effects of 6 months of voluntary wheel running in 10-month-old female SAMP8 mice. Exercise in SAMP8 mice improved phenotypic features associated with premature aging (i.e., skin color and body tremor) and enhanced vascularization and BDNF gene expression in the hippocampus compared with controls. With the aim of identifying genes involved in brain aging responsive to long-term exercise, we performed whole genome microarray studies in hippocampus from sedentary SAMP8 (P8sed), SAMR1 (R1sed), and exercised SAMP8 (P8run) mice. The genes differentially expressed in P8sed versus R1sed were considered as putative aging markers (i) and those differentially expressed in P8run versus P8sed were considered as genes modulated by exercise (ii). Genes differentially expressed in both comparisons (i and ii) were considered as putative aging genes responsive to physical exercise. We identified 34 genes which met both criteria. Gene ontology analysis revealed that they are mainly involved in functions related to extracellular matrix maintenance. Selected genes were validated by real-time quantitative PCR assays, i.e., collagen type 1 alpha 1 (col1a1), collagen type 1 alpha 2 (col1a2), fibromodulin (fmod), prostaglandin D(2) synthase (ptgds), and aldehyde dehydrogenase (Aldh1a2). As a whole, our study suggests that exercise training during adulthood may prevent or delay gene expression alterations and processes associated with hippocampal aging in at-risk subjects.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Química Encefálica/genética , Regulação da Expressão Gênica , Hipocampo/fisiologia , Condicionamento Físico Animal/fisiologia , Envelhecimento/fisiologia , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Transgênicos , Condicionamento Físico Animal/tendências , Distribuição Aleatória , Fatores de Tempo
5.
Behav Brain Res ; 228(2): 261-71, 2012 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-22119712

RESUMO

We examined whether LMN diet, reported to induce neurogenesis in adult mice, was able to antagonize the age-related behavioural impairment and neuropathology in wild type (WT) mice and Tg2576 mice, a mouse model of Alzheimer's disease (AD). Thirteen-month-old mice (once the amyloid (Aß) plaques were formed) were fed with the LMN diet for 5 months, and in the last 2 months of the regimen they received a battery of behavioural tests. In general, both aging and (to a higher extent) Tg2576 genotype deteriorated sensorimotor reflexes, exploratory behaviour in the hole board, activity (but not anxiety) in the elevated plus-maze, ambulation in the home cage during the dark phase, and spatial learning in the Morris water maze. LMN diet did not affect the detrimental effects observed in sensorimotor reflexes, but clearly reversed the effects of both aging and Tg2576 genotype. This behavioural amelioration was correlated with a 70% increase in cellular proliferation in subventricular zone (SVZ) of the brain, but did not correlate with a decrease of amyloid plaques. In contrast, administration of LMN diet to 10 months old mice (before the plaques are formed) strongly suggested a putative delay in the formation of plaques, as indicated by a decreasing tendency of soluble and fibrillar Aß levels in hippocampus which correlated with a decrease in Aß (1-40, 1-42) plasma content. Herein we describe for the first time that LMN diet rich in polyphenols, dry fruits and cocoa, was able to decrease behavioural deterioration caused by aging and Tg2576 genotype and to delay the Aß plaque formation. These results corroborate the increasing importance of polyphenols as human dietary supplements in amelioration of the cognitive impairment during aging and neurological disorders such as AD.


Assuntos
Envelhecimento , Doença de Alzheimer/complicações , Transtornos Cognitivos/dietoterapia , Transtornos Cognitivos/etiologia , Ácidos Graxos Insaturados/administração & dosagem , Polifenóis/administração & dosagem , Fatores Etários , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Força Muscular/efeitos dos fármacos , Força Muscular/genética , Mutação/genética , Placa Amiloide , Equilíbrio Postural/efeitos dos fármacos , Equilíbrio Postural/genética , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Reflexo/efeitos dos fármacos , Reflexo/genética , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia
6.
Hippocampus ; 22(3): 399-408, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21136519

RESUMO

Post-traumatic stress disorder (PTSD) patients show cognitive deficits, but it is unclear whether these are a consequence of the pathology or a pre-existing factor of vulnerability to PTSD. Animal models may help to demonstrate whether or not exposure to certain stressors can actually induce long-lasting (LL; days) impairment of hippocampus-dependent memory tasks and to characterize neurobiological mechanisms. Adult male rats were exposed to 2-h immobilization on boards (IMO), a severe stressor, and spatial learning in the Morris water maze (MWM) was studied days later. Exposure to IMO did not modify learning or short-term memory in the MWM when learning started 3 or 9 days after IMO, but stressed rats did show impaired long-term memory at both times, in accordance with the severity of the stressor. New treatments to prevent PTSD symptoms are needed. Thus, considering the potential protective role of brain-derived neurotrophic factor (BDNF) on hippocampal function, 7,8-dihydroxyflavone (7,8-DHF), a recently characterized agonist of the BDNF receptor TrkB, was given before or after IMO in additional experiments. Again, exposure to IMO resulted in LL deficit in long-term memory, and such impairment was prevented by the administration of 7,8-DHF either 2 h prior IMO or 8 h after the termination of IMO. The finding that IMO-induced impairment of spatial memory was prevented by pharmacological potentiation of TrkB pathway with 7,8-DHF even when the drug was given 8 h after IMO suggests that IMO-induced impairment is likely to be a LL process that is strongly dependent on the integrity of the BDNF-TrkB system and is susceptible to poststress therapeutic interventions. 7,8-DHF may represent a new therapeutic approach for early treatment of subjects who have suffered traumatic experiences.


Assuntos
Flavanonas/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Receptor trkB/agonistas , Estresse Fisiológico/fisiologia , Estresse Psicológico/complicações , Hormônio Adrenocorticotrópico/sangue , Animais , Corticosterona/sangue , Flavanonas/uso terapêutico , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Restrição Física , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
7.
Ageing Res Rev ; 10(4): 475-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21624506

RESUMO

Aging is a gradual process during which molecular and cellular processes deteriorate progressively, often leading to such pathological conditions as vascular and metabolic disorders and cognitive decline. Although the mechanisms of aging are not yet fully understood, inflammation, oxidative damage, mitochondrial dysfunction, functional alterations in specific neuronal circuits and a restricted degree of apoptosis are involved. Physical exercise improves the efficiency of the capillary system and increases the oxygen supply to the brain, thus enhancing metabolic activity and oxygen intake in neurons, and increases neurotrophin levels and resistance to stress. Regular exercise and an active lifestyle during adulthood have been associated with reduced risk and protective effects for mild cognitive impairment and Alzheimer's disease. Similarly, studies in animal models show that physical activity has positive physiological and cognitive effects that correlate with changes in transcriptional profiles. According to numerous studies, epigenetic events that include changes in DNA methylation patterns, histone modification and alterations in microRNA profiles seem to be a signature of aging. Hence, insight into the epigenetic mechanisms involved in the aging process and their modulation through lifestyle interventions such as physical exercise might open new avenues for the development of preventive and therapeutic strategies to treat aging-related diseases.


Assuntos
Envelhecimento/fisiologia , Epigênese Genética/fisiologia , Exercício Físico/fisiologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Epigênese Genética/genética , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Inflamação/prevenção & controle
8.
FEBS Lett ; 583(12): 2121-5, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19482024

RESUMO

Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients.


Assuntos
Adiposidade/fisiologia , Gorduras na Dieta/efeitos adversos , Resistência à Insulina/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Adipócitos/patologia , Adiposidade/genética , Animais , Crescimento Celular , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Humanos , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Distrofia Miotônica/etiologia , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Risco , Aumento de Peso
9.
Eur J Neurosci ; 16(3): 547-50, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12193199

RESUMO

Behavioural assessment of mice lacking adenosine A1 receptors (A1Rs) showed reduced activity in some phases of the light-dark cycle, reduced exploratory behaviour in the open-field and in the hole-board, increased anxiety in the plus maze and dark-light box and increased aggressiveness in the resident-intruder test. No differences were found in spatial reference and working memory in several Morris water maze tasks. Both mutant mice had reduced muscle strength and survival rate. These results confirm the involvement of adenosine in motor activity, exploratory behaviour, anxiety and aggressiveness. A1Rs also appear to play a critical role in ageing-related deterioration.


Assuntos
Adenosina/metabolismo , Agressão/fisiologia , Ansiedade/genética , Química Encefálica/genética , Encéfalo/metabolismo , Debilidade Muscular/genética , Receptores Purinérgicos P1/deficiência , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Ritmo Circadiano/genética , Feminino , Aprendizagem/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Atividade Motora/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Receptores Purinérgicos P1/genética , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...